Analyzing Data from Multiple Files
Overview
Teaching: 20 min
Exercises: 0 minQuestions
How can I do the same operations on many different files?
Objectives
Use a library function to get a list of filenames that match a wildcard pattern.
Write a
for
loop to process multiple files.
We now have almost everything we need to process all our data files. The only thing that’s missing is a library with a rather unpleasant name:
import glob
The glob
library contains a function, also called glob
,
that finds files and directories whose names match a pattern.
We provide those patterns as strings:
the character *
matches zero or more characters,
while ?
matches any one character.
We can use this to get the names of all the CSV files in the current directory:
print(glob.glob('data/*.csv'))
['data/03D1a1.csv', 'data/03D1ar.csv', 'data/03D1au.csv', 'data/03D1aw.csv', 'data/03D1ax.csv', 'data/03D1bk.csv', 'data/03D1bm.csv', 'data/03D1bp.csv', 'data/03D1cm.csv', 'data/03D1co.csv', 'data/03D1dj.csv', 'data/03D1dt.csv', 'data/03D1ew.csv', 'data/03D1fc.csv', 'data/03D1fq.csv', 'data/03D1gt.csv', 'data/03D3af.csv',...
'data/06D4cl.csv', 'data/06D4co.csv', 'data/06D4cq.csv', 'data/06D4dh.csv']
As these examples show,
glob.glob
’s result is a list of file and directory paths in arbitrary order.
This means we can loop over it
to do something with each filename in turn.
In our case,
the “something” we want to do is deternine the minimum and maximum brightness for each supernova dataset.
If we want to start by analyzing just the first three files in alphabetical order, we can use the
sorted
built-in function to generate a new sorted list from the glob.glob
output:
import numpy
import glob
filenames = sorted(glob.glob('data/*.csv'))
filenames = filenames[0:3]
for f in filenames:
print(f)
data = numpy.loadtxt(fname=f, delimiter=',', skiprows=1)
y_min = numpy.nanmin(data[:,[1,3,5,7]])
y_max = numpy.nanmax(data[:,[1,3,5,7]])
print(f, 'Min brightness: ', y_min, 'Max brightness: ', y_max)
data/03D1ar.csv
data/03D1ar.csv Min brightness: -117.01 Max brightness: 694.11
data/03D1au.csv
data/03D1au.csv Min brightness: -4.7982 Max brightness: 1510.4
data/03D1aw.csv
data/03D1aw.csv Min brightness: -16.833 Max brightness: 956.81
You could also use this loop to plot each figure :
import matplotlib.pyplot
filenames = sorted(glob.glob('data/*.csv'))
filenames = filenames[0:3]
for f in filenames:
print('Plotting {}...'.format(f))
data = numpy.loadtxt(fname=f, delimiter=',', skiprows=1)
col1 = data[:, 1]
col3 = data[:, 3]
plt.scatter(col1, col2, color='blue', alpha=.5)
plt.xlabel('Column 1')
plt.ylabel('Column 2')
plt.title('Col 1 vs 2 for {}'.format(f))
plt.show()
plt.clf()
Plotting Differences (DO NOT USE)
Plot the difference between the average of the first dataset and the average of the second dataset, i.e., the difference between the leftmost plot of the first two figures.
Solution
import glob import numpy import matplotlib.pyplot filenames = sorted(glob.glob('inflammation*.csv')) data0 = numpy.loadtxt(fname=filenames[0], delimiter=',') data1 = numpy.loadtxt(fname=filenames[1], delimiter=',') fig = matplotlib.pyplot.figure(figsize=(10.0, 3.0)) matplotlib.pyplot.ylabel('Difference in average') matplotlib.pyplot.plot(numpy.mean(data0, axis=0) - numpy.mean(data1, axis=0)) fig.tight_layout() matplotlib.pyplot.show()
Generate Composite Statistics (DO NOT USE)
Use each of the files once to generate a dataset containing values averaged over all patients:
filenames = glob.glob('inflammation*.csv') composite_data = numpy.zeros((60,40)) for f in filenames: # sum each new file's data into composite_data as it's read # # and then divide the composite_data by number of samples composite_data /= len(filenames)
Then use pyplot to generate average, max, and min for all patients.
Solution
import glob import numpy import matplotlib.pyplot filenames = glob.glob('inflammation*.csv') composite_data = numpy.zeros((60,40)) for f in filenames: data = numpy.loadtxt(fname = f, delimiter=',') composite_data += data composite_data/=len(filenames) fig = matplotlib.pyplot.figure(figsize=(10.0, 3.0)) axes1 = fig.add_subplot(1, 3, 1) axes2 = fig.add_subplot(1, 3, 2) axes3 = fig.add_subplot(1, 3, 3) axes1.set_ylabel('average') axes1.plot(numpy.mean(composite_data, axis=0)) axes2.set_ylabel('max') axes2.plot(numpy.max(composite_data, axis=0)) axes3.set_ylabel('min') axes3.plot(numpy.min(composite_data, axis=0)) fig.tight_layout() matplotlib.pyplot.show()
Key Points
Use
glob.glob(pattern)
to create a list of files whose names match a pattern.Use
*
in a pattern to match zero or more characters, and?
to match any single character.